enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    The work W done by a constant force of magnitude F on a point that moves a displacement s in a straight line in the direction of the force is the product = For example, if a force of 10 newtons ( F = 10 N ) acts along a point that travels 2 metres ( s = 2 m ), then W = Fs = (10 N) (2 m) = 20 J .

  3. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The kinetic energy of an object is equal to the work, force times displacement , needed to achieve its stated velocity. Having gained this energy during its acceleration, the mass maintains this kinetic energy unless its speed changes. The same amount of work is done by the object when decelerating from its current speed to a state of rest. [2]

  4. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  5. Conjugate variables (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_variables...

    The pressure acts as a generalized force – pressure differences force a change in volume, and their product is the energy lost by the system due to mechanical work. Pressure is the driving force, volume is the associated displacement, and the two form a pair of conjugate variables. The above holds true only for non-viscous fluids.

  6. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Now, the work by the force of gravity is opposite to the change in potential energy, W gravity = −ΔE pot,gravity: while the force of gravity is in the negative z-direction, the work—gravity force times change in elevation—will be negative for a positive elevation change Δz = z 2 − z 1, while the corresponding potential energy change ...

  7. Generalized forces - Wikipedia

    en.wikipedia.org/wiki/Generalized_forces

    In the application of the principle of virtual work it is often convenient to obtain virtual displacements from the velocities of the system. For the n particle system, let the velocity of each particle P i be V i, then the virtual displacement δr i can also be written in the form [2] = = ˙, =, …,.

  8. Virtual work - Wikipedia

    en.wikipedia.org/wiki/Virtual_work

    The work of a force on a particle along a virtual displacement is known as the virtual work. Historically, virtual work and the associated calculus of variations were formulated to analyze systems of rigid bodies, [ 1 ] but they have also been developed for the study of the mechanics of deformable bodies.

  9. Conservative force - Wikipedia

    en.wikipedia.org/wiki/Conservative_force

    In physics, a conservative force is a force with the property that the total work done by the force in moving a particle between two points is independent of the path taken. [1] Equivalently, if a particle travels in a closed loop, the total work done (the sum of the force acting along the path multiplied by the displacement ) by a conservative ...