Search results
Results from the WOW.Com Content Network
hence the net force is equal to the mass of the particle times its acceleration. [ 1 ] Example : A model airplane of mass 1 kg accelerates from rest to a velocity of 6 m/s due north in 2 s.
The solution r(t) to the equation of motion, with specified initial values, describes the system for all times t after t = 0. Other dynamical variables like the momentum p of the object, or quantities derived from r and p like angular momentum , can be used in place of r as the quantity to solve for from some equation of motion, although the ...
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...
A body's moment of inertia about a particular axis depends both on the mass and its distribution relative to the axis, increasing with mass & distance from the axis. It is an extensive (additive) property: for a point mass the moment of inertia is simply the mass times the square of the perpendicular distance to the axis of rotation. The moment ...
The total center of mass of the forks, cork, and toothpick is on top of the pen's tip. Significant aspects of the motion of an extended body can be understood by imagining the mass of that body concentrated to a single point, known as the center of mass. The location of a body's center of mass depends upon how that body's material is distributed.
For a constant mass, force equals mass times acceleration (=). For every action, there is an equal and opposite reaction. (In other words, whenever one body exerts a force F → {\displaystyle {\vec {F}}} onto a second body, (in some cases, which is standing still) the second body exerts the force − F → {\displaystyle -{\vec {F}}} back onto ...
The kinetic energy of an object is equal to the work, force times displacement , needed to achieve its stated velocity. Having gained this energy during its acceleration , the mass maintains this kinetic energy unless its speed changes.
In terms of a displacement-time (x vs. t) graph, the instantaneous ... Angular momentum in scalar form is the mass times the distance to the origin times the ...