Ad
related to: elements of set theory endertonebay.com has been visited by 1M+ users in the past month
Search results
Results from the WOW.Com Content Network
Herbert Bruce Enderton (April 15, 1936 – October 20, 2010) [1] was an American mathematician. ... Elements of Set Theory. Academic Press. 1977.
Suppose, to the contrary, that there is a function, f, on the natural numbers with f(n+1) an element of f(n) for each n.Define S = {f(n): n a natural number}, the range of f, which can be seen to be a set from the axiom schema of replacement.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.
Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes. There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Suppes, Patrick (1972) [1960], Axiomatic Set Theory, NY: Dover Publications, Inc., ISBN 0-486-61630-4 - Both the notion of set (a collection of members), membership or element-hood, the axiom of extension, the axiom of separation, and the union axiom (Suppes calls it the sum axiom) are needed for a more thorough understanding of "set element".
The method of forcing is employed in set theory, model theory, and recursion theory, as well as in the study of intuitionistic mathematics. The mathematical field of category theory uses many formal axiomatic methods, and includes the study of categorical logic , but category theory is not ordinarily considered a subfield of mathematical logic.
A set with precisely two elements is also called a 2-set or (rarely) a binary set. An unordered pair is a finite set; its cardinality (number of elements) is 2 or (if the two elements are not distinct) 1. In axiomatic set theory, the existence of unordered pairs is required by an axiom, the axiom of pairing.
Ad
related to: elements of set theory endertonebay.com has been visited by 1M+ users in the past month