Search results
Results from the WOW.Com Content Network
This is especially true of cryptographic hash functions, which may be used to detect many data corruption errors and verify overall data integrity; if the computed checksum for the current data input matches the stored value of a previously computed checksum, there is a very high probability the data has not been accidentally altered or corrupted.
Several utilities, such as md5deep, can use such checksum files to automatically verify an entire directory of files in one operation. The particular hash algorithm used is often indicated by the file extension of the checksum file. The ".sha1" file extension indicates a checksum file containing 160-bit SHA-1 hashes in sha1sum format.
cksum is a command in Unix and Unix-like operating systems that generates a checksum value for a file or stream of data. The cksum command reads each file given in its arguments, or standard input if no arguments are provided, and outputs the file's 32-bit cyclic redundancy check (CRC) checksum and byte count. [1]
Fast-Hash [3] 32 or 64 bits xorshift operations SpookyHash 32, 64, or 128 bits see Jenkins hash function: CityHash [4] 32, 64, 128, or 256 bits FarmHash [5] 32, 64 or 128 bits MetroHash [6] 64 or 128 bits numeric hash (nhash) [7] variable division/modulo xxHash [8] 32, 64 or 128 bits product/rotation t1ha (Fast Positive Hash) [9] 64 or 128 bits ...
SFV verification ensures that a file has not been corrupted by comparing the file's CRC hash value to a previously calculated value. [1] Due to the nature of hash functions, hash collisions may result in false positives, but the likelihood of collisions is usually negligible with random corruption. (The number of possible checksums is limited ...
A checksum of a message is a modular arithmetic sum of message code words of a fixed word length (e.g., byte values). The sum may be negated by means of a ones'-complement operation prior to transmission to detect unintentional all-zero messages. Checksum schemes include parity bits, check digits, and longitudinal redundancy checks.
When the data word is divided into 32-bit blocks, two 32-bit sums result and are combined into a 64-bit Fletcher checksum. Usually, the second sum will be multiplied by 2 32 and added to the simple checksum, effectively stacking the sums side-by-side in a 64-bit word with the simple checksum at the least significant end. This algorithm is then ...
The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words in the header. For purposes of computing the checksum, the value of the checksum field is zero. If there is no corruption, the result of summing the entire IP header, including checksum, and then taking its one's complement should be zero.