enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model.

  3. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    The simplest Markov model is the Markov chain.It models the state of a system with a random variable that changes through time. In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state.

  4. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Markov chains and continuous-time Markov processes are useful in chemistry when physical systems closely approximate the Markov property. For example, imagine a large number n of molecules in solution in state A, each of which can undergo a chemical reaction to state B with a certain average rate. Perhaps the molecule is an enzyme, and the ...

  5. Markov random field - Wikipedia

    en.wikipedia.org/wiki/Markov_random_field

    In the domain of physics and probability, a Markov random field (MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph. In other words, a random field is said to be a Markov random field if it satisfies Markov properties.

  6. Time reversibility - Wikipedia

    en.wikipedia.org/wiki/Time_reversibility

    Markov processes can only be reversible if their stationary distributions have the property of detailed balance: (=, + =) = (=, + =). Kolmogorov's criterion defines the condition for a Markov chain or continuous-time Markov chain to be time-reversible.

  7. Markov operator - Wikipedia

    en.wikipedia.org/wiki/Markov_operator

    In probability theory and ergodic theory, a Markov operator is an operator on a certain function space that conserves the mass (the so-called Markov property). If the underlying measurable space is topologically sufficiently rich enough, then the Markov operator admits a kernel representation. Markov operators can be linear or non-linear.

  8. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    The "Markov" in "Markov decision process" refers to the underlying structure of state transitions that still follow the Markov property. The process is called a "decision process" because it involves making decisions that influence these state transitions, extending the concept of a Markov chain into the realm of decision-making under uncertainty.

  9. Renewal theory - Wikipedia

    en.wikipedia.org/wiki/Renewal_theory

    The Poisson process is the unique renewal process with the Markov property, [1] as the exponential distribution is the unique continuous random variable with the property of memorylessness. Renewal-reward processes