Search results
Results from the WOW.Com Content Network
Radar Pulse Train. The carrier is an RF signal, typically of microwave frequencies, which is usually (but not always) modulated to allow the system to capture the required data. In simple ranging radars, the carrier will be pulse modulated and in continuous wave systems, such as Doppler radar, modulation may not be required.
The pulse-Doppler radar equation can be used to understand trade-offs between different design constraints, like power consumption, detection range, and microwave safety hazards. This is a very simple form of modeling that allows performance to be evaluated in a sterile environment.
Pulse-Doppler begins with coherent pulses transmitted through an antenna or transducer. There is no modulation on the transmit pulse. Each pulse is a perfectly clean slice of a perfect coherent tone. The coherent tone is produced by the local oscillator. There can be dozens of transmit pulses between the antenna and the reflector.
Different PRF allow systems to perform very different functions. A radar system uses a radio frequency electromagnetic signal reflected from a target to determine information about that target. PRF is required for radar operation. This is the rate at which transmitter pulses are sent into air or space.
The radar mile is the time it takes for a radar pulse to travel one nautical mile, reflect off a target, and return to the radar antenna. Since a nautical mile is defined as 1,852 m, then dividing this distance by the speed of light (299,792,458 m/s), and then multiplying the result by 2 yields a result of 12.36 μs in duration.
Pulse-Doppler radar sensors are therefore more suited for long-range detection, while FMCW radar sensors are more suited for short-range detection. Monopulse : A monopulse feed network, as shown in Fig. 2, increases the angular accuracy to a fraction of the beamwidth by comparing echoes, which originate from a single radiated pulse and which ...
The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power. Furthermore, the process ...
The bandwidth of a chirped system can be as narrow or as wide as the designers desire. Pulse-based UWB systems, being the more common method associated with the term "UWB radar", are described here. A pulse-based radar system transmits very short pulses of electromagnetic energy, typically only a few waves or less.