Search results
Results from the WOW.Com Content Network
A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...
This defines the factorial function using its recursive definition. In contrast, it is more typical to define a procedure for an imperative language. In lisps and lambda calculus, functions are generally first-class citizens. Loosely, this means that functions can be inputs and outputs for other functions.
"hello world" print print is a word in the io vocabulary that takes a string from the stack and returns nothing. It prints the string to the current output stream (by default, the terminal or the graphical listener). [3] The factorial function! can be implemented in Factor in the following way: :
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
The factorial function is a common feature in scientific calculators. [73] It is also included in scientific programming libraries such as the Python mathematical functions module [74] and the Boost C++ library. [75]
This page was last edited on 21 September 2003, at 08:48 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
(Here we use the standard notations and conventions of lambda calculus: Y is a function that takes one argument f and returns the entire expression following the first period; the expression . ( ) denotes a function that takes one argument x, thought of as a function, and returns the expression ( ), where ( ) denotes x applied to itself ...
In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number.