Search results
Results from the WOW.Com Content Network
Light-dependent reactions of photosynthesis at the thylakoid membrane. Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).
This word is taken from two Greek words, photos, which means light, and synthesis, which in chemistry means making a substance by combining simpler substances. So, in the presence of light, synthesis of food is called 'photosynthesis'. Noncyclic photophosphorylation through light-dependent reactions of photosynthesis at the thylakoid membrane.
Photosynthesis occurs in two stages. In the first stage, light-dependent reactions or light reactions capture the energy of light and use it to make the hydrogen carrier NADPH and the energy-storage molecule ATP. During the second stage, the light-independent reactions use these products to capture and reduce carbon dioxide.
The value of the photosynthetic efficiency is dependent on how light energy is defined – it depends on whether we count only the light that is absorbed, and on what kind of light is used (see Photosynthetically active radiation). It takes eight (or perhaps ten or more [1]) photons to use one molecule of CO 2.
The Calvin cycle uses the chemical energy of ATP and the reducing power of NADPH from the light-dependent reactions to produce sugars for the plant to use. These substrates are used in a series of reduction-oxidation ( redox ) reactions to produce sugars in a step-wise process; there is no direct reaction that converts several molecules of CO 2 ...
They use the energy from light to carry out various cellular metabolic processes. It is a common misconception that phototrophs are obligatorily photosynthetic . Many, but not all, phototrophs often photosynthesize: they anabolically convert carbon dioxide into organic material to be utilized structurally, functionally, or as a source for later ...
Photoexcitation is the first step in a photochemical process where the reactant is elevated to a state of higher energy, an excited state.The first law of photochemistry, known as the Grotthuss–Draper law (for chemists Theodor Grotthuss and John W. Draper), states that light must be absorbed by a chemical substance in order for a photochemical reaction to take place.
If the heterotroph uses chemical energy, it is a chemoheterotroph (e.g., humans and mushrooms). If it uses light for energy, then it is a photoheterotroph (e.g., green non-sulfur bacteria ). Heterotrophs represent one of the two mechanisms of nutrition ( trophic levels ), the other being autotrophs ( auto = self, troph = nutrition).