Search results
Results from the WOW.Com Content Network
Gas exchange takes place in the gills which consist of thin or very flat filaments and lammellae which expose a very large surface area of highly vascularized tissue to the water. Other animals, such as insects, have respiratory systems with very simple anatomical features, and in amphibians, even the skin plays a vital role in gas exchange.
Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.
The respiratory tract is the subdivision of the respiratory system involved with the process of conducting air to the alveoli for the purposes of gas exchange in mammals. [1] The respiratory tract is lined with respiratory epithelium as respiratory mucosa. [2]
In mammals, physiological respiration involves respiratory cycles of inhaled and exhaled breaths. Inhalation (breathing in) is usually an active movement that brings air into the lungs where the process of gas exchange takes place between the air in the alveoli and the blood in the pulmonary capillaries.
In mammals and most other tetrapods, two lungs are located near the backbone on either side of the heart. Their function in the respiratory system is to extract oxygen from the atmosphere and transfer it into the bloodstream, and to release carbon dioxide from the bloodstream into the atmosphere, in a process of gas exchange. Respiration is ...
Liquid breathing is a form of respiration in which a normally air-breathing organism breathes an oxygen-rich liquid which is capable of CO 2 gas exchange (such as a perfluorocarbon). [ 1 ] The liquid involved requires certain physical properties, such as respiratory gas solubility, density, viscosity, vapor pressure and lipid solubility, which ...
The pond loach is able to respond to the periodic drying in their native habitats by burrowing into the mud and exchanging gas through the posterior end of their alimentary canal. [5] [6] Studies have shown that mammals are capable of performing intestinal respiration to a limited degree in a laboratory setting. [1]
The main reason for exhalation is to rid the body of carbon dioxide, which is the waste product of gas exchange in humans. Air is brought into the lungs through inhalation. Diffusion in the alveoli allows for the exchange of O 2 into the pulmonary capillaries and the removal of CO 2 and other gases from the pulmonary capillaries to be exhaled ...