Search results
Results from the WOW.Com Content Network
In electrical engineering, current sensing is any one of several techniques used to measure electric current. The measurement of current ranges from picoamps to tens of thousands of amperes. The selection of a current sensing method depends on requirements such as magnitude, accuracy, bandwidth, robustness, cost, isolation or size. The current ...
Developmental bioelectricity is a sub-discipline of biology, related to, but distinct from, neurophysiology and bioelectromagnetics. Developmental bioelectricity refers to the endogenous ion fluxes, transmembrane and transepithelial voltage gradients, and electric currents and fields produced and sustained in living cells and tissues.
Bioelectromagnetics, also known as bioelectromagnetism, is the study of the interaction between electromagnetic fields and biological entities. Areas of study include electromagnetic fields produced by living cells, tissues or organisms, the effects of man-made sources of electromagnetic fields like mobile phones, and the application of electromagnetic radiation toward therapies for the ...
The sensing of magnetic fields by organisms is known as magnetoreception. Biological effects of weak low frequency magnetic fields, less than about 0.1 millitesla (or 1 Gauss) and 100 Hz correspondingly, constitutes a physics problem. The effects look paradoxical, for the energy quantum of these electromagnetic fields is by many orders of value ...
Galvanism is a term invented by the late 18th-century physicist and chemist Alessandro Volta to refer to the generation of electric current by chemical action. [2] The term also came to refer to the discoveries of its namesake, Luigi Galvani , specifically the generation of electric current within biological organisms and the contraction ...
Physics – negentropy, stochastic processes, and the development of new physical techniques and instrumentation as well as their application. Quantum biology – The field of quantum biology applies quantum mechanics to biological objects and problems. Decohered isomers to yield time-dependent base substitutions. These studies imply ...
Electrophysiology (from Greek ἥλεκτ, ēlektron, "amber" [see the etymology of "electron"]; φύσις, physis, "nature, origin"; and -λογία, -logia) is the branch of physiology that studies the electrical properties of biological cells and tissues.
Quantum biology is the study of applications of quantum mechanics and theoretical chemistry to aspects of biology that cannot be accurately described by the classical laws of physics. [1] An understanding of fundamental quantum interactions is important because they determine the properties of the next level of organization in biological systems.