Search results
Results from the WOW.Com Content Network
Eukaryotic flagella and cilia are identical in structure but have different lengths and functions. [9] Prokaryotic fimbriae and pili are smaller, and thinner appendages, with different functions. Cilia are attached to the surface of flagella and are used to swim or move fluid from one region to another. [10]
Cilia are typically short (5–10 μm) and beat in an oar-like fashion with an effective stroke followed by a recovery stroke. Flagella beat with a snake-like motion and are typically longer (generally 50–150 μm, but ranging from 12 μm to several mm in some species), with flagellar length in the protist Chlamydomonas being regulated by ...
The ciliates are a group of alveolates characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a different undulating pattern than flagella. Cilia occur in all members of the group (although the peculiar ...
Some motile cilia lack the central pair, and some non-motile cilia have the central pair, hence the four types. [5] [7] Most non-motile cilia, termed primary cilia or sensory cilia, serve solely as sensory organelles. [8] [9] Most vertebrate cell types possess a single non-motile primary cilium, which functions as a cellular antenna.
Other cellular extensions that protrude from the cell membrane are known as membrane protrusions or cell protrusions, also cell appendages, such as flagella, and microvilli. [ 8 ] [ 9 ] Microtentacles are cell protrusions attached to free-floating cells, associated with the spread of some cancer cells .
An undulipodium or undulopodium (Greek: "swinging foot"; plural undulipodia), or a 9+2 organelle is a motile filamentous extracellular projection of eukaryotic cells.It is basically synonymous to flagella and cilia which are differing terms for similar molecular structures used on different types of cells, and usually correspond to different waveforms.
Cilia and flagella always extend directly from a MTOC, in this case termed the basal body. The action of the dynein motor proteins on the various microtubule strands that run along a cilium or flagellum allows the organelle to bend and generate force for swimming, moving extracellular material, and other roles.
The radial spoke is known to play a role in the mechanical movement of the flagellum/cilium. For example, mutant organisms lacking properly functioning radial spokes have flagella and cilia that are immotile. Radial spokes also influence the cilium "waveform"; that is, the exact bending pattern the cilium repeats.