Search results
Results from the WOW.Com Content Network
The 100-inch (2.5 m) Hooker telescope at Mount Wilson Observatory that Hubble used to measure galaxy distances and a value for the rate of expansion of the universe. Edwin Hubble's arrival at Mount Wilson Observatory, California, in 1919 coincided roughly with the completion of the 100-inch (2.5 m) Hooker Telescope , then the world's largest.
The law states that the greater the distance between any two galaxies, the greater their relative speed of separation. In 1929, Edwin Hubble discovered that most of the universe was expanding and moving away from everything else. If everything is moving away from everything else, then it should be thought that everything was once closer together.
His observations played a major role in the development of physical cosmology, including assisting Edwin Hubble in formulating Hubble's law. In 1950 he earned a D.Sc. from Lund University. [2] He retired in 1957. He discovered Comet C/1961 R1 (Humason), notable for its large perihelion distance. Due to merest chance, Humason missed discovering ...
The discovery of Hubble's law is attributed to work published by Edwin Hubble in 1929, [2] [3] [4] but the notion of the universe expanding at a calculable rate was first derived from general relativity equations in 1922 by Alexander Friedmann.
Edwin Hubble performed many critical calculations from work on the Hooker telescope. In 1923, Hubble discovered the first Cepheid variable in the spiral nebula of Andromeda using the 2.5-meter telescope. This discovery allowed him to calculate the distance to the spiral nebula of Andromeda and show that it was actually a galaxy outside the ...
Physical cosmology, as it is now understood, began in 1915 with the development of Albert Einstein's general theory of relativity, followed by major observational discoveries in the 1920s: first, Edwin Hubble discovered that the universe contains a huge number of external galaxies beyond the Milky Way; then, work by Vesto Slipher and others ...
Astronomers used the Hubble Space Telescope to make a landmark discovery of water vapor in the atmosphere of a planet just twice Earth’s diameter in size.
Following theoretical developments of the Friedmann equations by Alexander Friedmann and Georges Lemaître in the 1920s, and the discovery of the expanding universe by Edwin Hubble in 1929, it was immediately clear that tracing this expansion backwards in time predicts that the universe had almost zero size at a finite time in the past.