Search results
Results from the WOW.Com Content Network
The accelerated expansion of the universe is thought to have begun since the universe entered its dark-energy-dominated era roughly 5 billion years ago. [ 8 ] [ notes 1 ] Within the framework of general relativity , an accelerated expansion can be accounted for by a positive value of the cosmological constant Λ , equivalent to the presence of ...
A higher expansion rate would imply a smaller characteristic size of CMB fluctuations, and vice versa. The Planck collaboration measured the expansion rate this way and determined H 0 = 67.4 ± 0.5 (km/s)/Mpc. [26] There is a disagreement between this measurement and the supernova-based measurements, known as the Hubble tension.
Here is the Hubble parameter, a measure of the rate at which the universe is expanding. ρ {\displaystyle \rho } is the total density of mass and energy in the universe, a {\displaystyle a} is the scale factor (essentially the 'size' of the universe), and k {\displaystyle k} is the curvature parameter — that is, a measure of how curved ...
The universe's expansion rate, a figure called the Hubble constant, is measured in kilometers per second per megaparsec, a distance equal to 3.26 million light-years. A light-year is the distance ...
The rapid expansion immediately after the Big Bounce explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic. As the density of the Universe decreases, the effects of torsion weaken and the Universe smoothly enters the radiation-dominated era.
Since this increases with the volume of the universe, the expansion pressure is effectively constant, independent of the scale of the universe, while the other terms decrease with time. Thus, as the density of other forms of matter – dust and radiation – drops to very low concentrations, the cosmological constant (or "dark energy") term ...
On the other hand, the steady-state model says while the universe is expanding, it nevertheless does not change its appearance over time (the perfect cosmological principle). E.g., the universe has no beginning and no end. This required that matter be continually created in order to keep the universe's density from decreasing.
Recent observations conclude, from 7.5 billion years after the Big Bang, that the expansion rate of the universe has probably been increasing, commensurate with the Open Universe theory. [9] However, measurements made by the Wilkinson Microwave Anisotropy Probe suggest that the universe is either flat or very close to flat. [2]