Search results
Results from the WOW.Com Content Network
Since pH is a logarithmic scale, a difference of one in pH is equivalent to a tenfold difference in hydrogen ion concentration. Neutrality is not exactly 7 at 25 °C, but 7 serves as a good approximation in most cases.
A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000. The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis. Presentation of data on a logarithmic scale can be helpful when the data:
The Balmer series includes the lines due to transitions from an outer orbit n > 2 to the orbit n' = 2. Named after Johann Balmer, who discovered the Balmer formula, an empirical equation to predict the Balmer series, in 1885. Balmer lines are historically referred to as "H-alpha", "H-beta", "H-gamma" and so on, where H is the element hydrogen. [10]
The concentration of hydrogen ions and pH are inversely proportional; in an aqueous solution, an increased concentration of hydrogen ions yields a low pH, and subsequently, an acidic product. By definition, an acid is an ion or molecule that can donate a proton, and when introduced to a solution it will react with water molecules (H 2 O) to ...
It is the lightest element and, at standard conditions, is a gas of diatomic molecules with the formula H 2, sometimes called dihydrogen, [11] hydrogen gas, molecular hydrogen, or simply hydrogen. It is colorless, odorless, [ 12 ] non-toxic, and highly combustible .
The dihydrogen cation or hydrogen molecular ion is a cation (positive ion) with formula +. It consists of two hydrogen nuclei , each sharing a single electron. It is the simplest molecular ion. The ion can be formed from the ionization of a neutral hydrogen molecule by
Bases are proton acceptors; a base will receive a hydrogen ion from water, H 2 O, and the remaining H + concentration in the solution determines pH. A weak base will have a higher H + concentration than a stronger base because it is less completely protonated than a stronger base and, therefore, more hydrogen ions remain in its solution.
The hydrogen anion is the dominant bound-free opacity source at visible and near-infrared wavelengths in the atmospheres of stars like the Sun and cooler; [2] its importance was first noted in the 1930s. [3] The ion absorbs photons with energies in the range 0.75–4.0 eV, which ranges from the infrared into the visible spectrum.