Search results
Results from the WOW.Com Content Network
A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynamic engine during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference through ...
Download QR code; In other projects Appearance. move to sidebar hide ... Pressure-volume (p-V) diagram for the Carnot cycle. File usage. The following 3 pages use ...
Axial cross section of Carnot's heat engine. In this diagram, abgh is a cylindrical vessel, cd is a movable piston, and A and B are constant–temperature bodies. The vessel may be placed in contact with either body or removed from both (as it is here). [1] A Carnot heat engine [2] is a theoretical heat engine that operates on the Carnot cycle.
Q H = W + Q C = heat exchanged with the hot reservoir. η = W / (Q C + Q H) = thermal efficiency of the cycle If the cycle moves in a clockwise sense, then it is a heat engine that outputs work; if the cycle moves in a counterclockwise sense, it is a heat pump that takes in work and moves heat Q H from the cold reservoir to the hot reservoir.
The Carnot cycle is a cycle composed of the totally reversible processes of isentropic compression and expansion and isothermal heat addition and rejection. The thermal efficiency of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...
Since a Carnot heat engine is a reversible heat engine, and all reversible heat engines operate with the same efficiency between the same reservoirs, we have the first part of Carnot's theorem: No irreversible heat engine is more efficient than a Carnot heat engine operating between the same two thermal reservoirs.
One of the factors determining efficiency is how heat is added to the working fluid in the cycle, and how it is removed. The Carnot cycle achieves maximum efficiency because all the heat is added to the working fluid at the maximum temperature , and removed at the minimum temperature . In contrast, in an internal combustion engine, the ...