Search results
Results from the WOW.Com Content Network
[18] [19] Today, the degree, 1 / 360 of a turn, or the mathematically more convenient radian, 1 / 2 π of a turn (used in the SI system of units) is generally used instead. In the 1970s – 1990s, most scientific calculators offered the gon (gradian), as well as radians and degrees, for their trigonometric functions. [23]
Many electronic calculators allow calculations of trigonometric functions in either degrees or radians. The calculator mode must be compatible with the units used for geometric coordinates. Differences in latitude and longitude are labeled and calculated as follows:
The straight-line distance between the central point on the map to any other point is the same as the straight-line 3D distance through the globe between the two points. c. 150 BC: Stereographic: Azimuthal Conformal Hipparchos* Map is infinite in extent with outer hemisphere inflating severely, so it is often used as two hemispheres.
Formulas for the Web Mercator are fundamentally the same as for the standard spherical Mercator, but before applying zoom, the "world coordinates" are adjusted such that the upper left corner is (0, 0) and the lower right corner is ( , ): [7] = ⌊ (+) ⌋ = ⌊ ( [ (+)]) ⌋ where is the longitude in radians and is geodetic latitude in radians.
One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.
The length of a degree of longitude (east–west distance) depends only on the radius of a circle of latitude. For a sphere of radius a that radius at latitude φ is a cos φ, and the length of a one-degree (or π / 180 radian) arc along a circle of latitude is
An arc of a circle with the same length as the radius of that circle corresponds to an angle of 1 radian. A full circle corresponds to a full turn, or approximately 6.28 radians, which is expressed here using the Greek letter tau (τ). Some special angles in radians, stated in terms of 𝜏. A comparison of angles expressed in degrees and radians.
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.