enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    Another common way of expressing the base is writing it as a decimal subscript after the number that is being represented (this notation is used in this article). 1111011 2 implies that the number 1111011 is a base-2 number, equal to 123 10 (a decimal notation representation), 173 8 and 7B 16 (hexadecimal).

  3. Operators in C and C++ - Wikipedia

    en.wikipedia.org/wiki/Operators_in_C_and_C++

    Most of the operators available in C and C++ are also available in other C-family languages such as C#, D, Java, Perl, and PHP with the same precedence, associativity, and semantics. Many operators specified by a sequence of symbols are commonly referred to by a name that consists of the name of each symbol.

  4. Decimal separator - Wikipedia

    en.wikipedia.org/wiki/Decimal_separator

    A radix point is most often used in decimal (base 10) notation, when it is more commonly called the decimal point (the prefix deci-implying base 10). In English-speaking countries , the decimal point is usually a small dot (.) placed either on the baseline, or halfway between the baseline and the top of the digits ( · ) [ 25 ] [ a ] In many ...

  5. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  6. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    156: it is divisible by 2 and by 13. Subtracting 5 times the last digit from 2 times the rest of the number gives a multiple of 26. (Works because 52 is divisible by 26.) 1,248 : (124 × 2) − (8 × 5) = 208 = 26 × 8. 27: Sum the digits in blocks of three from right to left. (Works because 999 is divisible by 27.) 2,644,272: 2 + 644 + 272 = 918.

  7. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  8. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    So a fixed-point scheme might use a string of 8 decimal digits with the decimal point in the middle, whereby "00012345" would represent 0001.2345. In scientific notation, the given number is scaled by a power of 10, so that it lies within a specific range—typically between 1 and 10, with the radix point appearing immediately after the first ...

  9. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    Compared with the fixed-point number system, the floating-point number system is more efficient in representing real numbers so it is widely used in modern computers. While the real numbers R {\displaystyle \mathbb {R} } are infinite and continuous, a floating-point number system F {\displaystyle F} is finite and discrete.