Search results
Results from the WOW.Com Content Network
The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces.
A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity , but it can be generalized to apply to any extensive quantity .
Continuity editing, a form of film editing that combines closely related shots into a sequence highlighting plot points or consistencies Continuity (fiction) , consistency of plot elements, such as characterization, location, and costuming, within a work of fiction (this is a mass noun)
The difference between uniform continuity and (ordinary) continuity is that, in uniform continuity there is a globally applicable (the size of a function domain interval over which function value differences are less than ) that depends on only , while in (ordinary) continuity there is a locally applicable that depends on both and . So uniform ...
In his 1821 book Cours d'analyse, Augustin-Louis Cauchy discussed variable quantities, infinitesimals and limits, and defined continuity of = by saying that an infinitesimal change in x necessarily produces an infinitesimal change in y, while Grabiner claims that he used a rigorous epsilon-delta definition in proofs. [2]
In contrast to simple continuity, uniform continuity is a property of a function that only makes sense with a specified domain; to speak of uniform continuity at a single point is meaningless. On a compact set, it is easily shown that all continuous functions are uniformly continuous.
Namely, the epsilon-delta definition of uniform continuity requires four quantifiers, while the infinitesimal definition requires only two quantifiers. It has the same quantifier complexity as the definition of uniform continuity in terms of sequences in standard calculus, which however is not expressible in the first-order language of the real ...
Absolute continuity of measures is reflexive and transitive, but is not antisymmetric, so it is a preorder rather than a partial order. Instead, if μ ≪ ν {\displaystyle \mu \ll \nu } and ν ≪ μ , {\displaystyle \nu \ll \mu ,} the measures μ {\displaystyle \mu } and ν {\displaystyle \nu } are said to be equivalent .