Search results
Results from the WOW.Com Content Network
One of the most basic and milestone models of population growth was the logistic model of population growth formulated by Pierre François Verhulst in 1838. The logistic model takes the shape of a sigmoid curve and describes the growth of a population as exponential, followed by a decrease in growth, and bound by a carrying capacity due to ...
For the competition equations, the logistic equation is the basis. The logistic population model, when used by ecologists often takes the following form: = (). Here x is the size of the population at a given time, r is inherent per-capita growth rate, and K is the carrying capacity.
In logistic populations however, the intrinsic growth rate, also known as intrinsic rate of increase (r) is the relevant growth constant. Since generations of reproduction in a geometric population do not overlap (e.g. reproduce once a year) but do in an exponential population, geometric and exponential populations are usually considered to be ...
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
P 0 = P(0) is the initial population size, r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation:
An example of a spider web projection of a trajectory on the graph of the logistic map, and the locations of the fixed points and on the graph. Graphs of maps, especially those of one variable such as the logistic map, are key to understanding the behavior of the map.
The Hubbert curve [2] is the first derivative of a logistic function, which has been used for modeling the depletion of crude oil in particular, the depletion of finite mineral resources in general [3] and also population growth patterns. [4] Example of a Hubbert Linearization on the US Lower-48 crude oil production.
Under the logistic model, population growth rate between these two limits is most often assumed to be sigmoidal (Figure 1). There is scientific evidence that some populations do grow in a logistic fashion towards a stable equilibrium – a commonly cited example is the logistic growth of yeast. The equation describing logistic growth is: [13]