Search results
Results from the WOW.Com Content Network
Kirchhoff's voltage law: The directed sum of the electrical potential differences around a circuit must be zero. Ohm's Law: The voltage across a resistor is the product of its resistance and the current flowing through it, at constant temperature.
In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period. A three-phase system may be arranged in delta (∆) or star (Y) (also denoted as wye in some areas, as symbolically it is similar to the letter 'Y').
A Magic Triangle image mnemonic - when the terms of Ohm's law are arranged in this configuration, covering the unknown gives the formula in terms of the remaining parameters. It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ.
In the power systems analysis field of electrical engineering, a per-unit system is the expression of system quantities as fractions of a defined base unit quantity. . Calculations are simplified because quantities expressed as per-unit do not change when they are referred from one side of a transformer to t
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
The book is notable for the extremely high number of detailed illustrations it contains, and the small softbound size of the volumes. The book was published by Theodore Audel & Company, and the majority of the illustrative content became the basis of decades of follow-up books published under the Audels brand name. The illustrative content of ...
In electrical engineering, susceptance (B) is the imaginary part of admittance (Y = G + jB), where the real part is conductance (G). The reciprocal of admittance is impedance (Z = R + jX), where the imaginary part is reactance (X) and the real part is resistance (R). In SI units, susceptance is measured in siemens (S).
The propagation constant, symbol γ, for a given system is defined by the ratio of the complex amplitude at the source of the wave to the complex amplitude at some distance x, such that,