enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adaptation to extrauterine life - Wikipedia

    en.wikipedia.org/wiki/Adaptation_to_extrauterine...

    This promotes thermoregulation of the neonate through heat generated from caregiver. Manifestations: Normal temperature ranges from 97.7 to 100.0 °F (36.5 to 37.8 °C). Cold infants may cry or appear restless. The neonates' arms and legs maintain a fetal position, lessening their body surface area and reducing heat loss. [1]

  3. Convection (heat transfer) - Wikipedia

    en.wikipedia.org/wiki/Convection_(Heat_transfer)

    Convection-cooling is sometimes loosely assumed to be described by Newton's law of cooling. [6] Newton's law states that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings while under the effects of a breeze. The constant of proportionality is the heat transfer coefficient. [7]

  4. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    The statement of Newton's law used in the heat transfer literature puts into mathematics the idea that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings. For a temperature-independent heat transfer coefficient, the statement is:

  5. Human thermoregulation - Wikipedia

    en.wikipedia.org/wiki/Human_thermoregulation

    Simplified control circuit of human thermoregulation. [8]The core temperature of a human is regulated and stabilized primarily by the hypothalamus, a region of the brain linking the endocrine system to the nervous system, [9] and more specifically by the anterior hypothalamic nucleus and the adjacent preoptic area regions of the hypothalamus.

  6. Stanton number - Wikipedia

    en.wikipedia.org/wiki/Stanton_number

    The Stanton number (St), is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). [1] [2]: 476 It is used to characterize heat transfer in forced convection flows.

  7. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. [1] The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for a Newtonian fluid .

  8. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    Where q” is the heat flux, is the thermal conductivity, is the heat transfer coefficient, and the subscripts and compare the surface and bulk values respectively. For mass transfer at an interface, we can equate Fick's law with Newton's law for convection, yielding:

  9. Péclet number - Wikipedia

    en.wikipedia.org/wiki/Péclet_number

    where k is the thermal conductivity, ρ the density, and c p the specific heat capacity. In engineering applications the Péclet number is often very large. In such situations, the dependency of the flow upon downstream locations is diminished, and variables in the flow tend to become "one-way" properties. Thus, when modelling certain ...