Search results
Results from the WOW.Com Content Network
These were the most remote objects discovered at the time. The pair of galaxies were found lensed by galaxy cluster CL1358+62 (z = 0.33). This was the first time since 1964 that something other than a quasar held the record for being the most distant object in the universe. [132] [135] [136] [133] [130] [137] PC 1247–3406: Quasar 1991 − ...
Up until the discovery of JADES-GS-z13-0 in 2022 by the James Webb Space Telescope, GN-z11 was the oldest and most distant known galaxy yet identified in the observable universe, [7] having a spectroscopic redshift of z = 10.957, which corresponds to a proper distance of approximately 32 billion light-years (9.8 billion parsecs).
The red object in the center of the zoom-in image is HD1. [1] is a proposed high-redshift galaxy, which is considered (as of April 2022) to be one of the earliest and most distant known galaxies yet identified in the observable universe. The galaxy, with an estimated redshift of approximately z = 13.27, is seen as it was about 324 million years ...
The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. [1] It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it. To any observer in the universe, it appears that all but the nearest galaxies ...
In 1964 a quasar became the most distant object in the universe for the first time. Quasars would remain the most distant objects in the universe until 1997, when a pair of non-quasar galaxies would take the title (galaxies CL 1358+62 G1 & CL 1358+62 G2 lensed by galaxy cluster CL 1358+62 ).
Characteristics. Type. Lyman-break galaxy. JADES-GS-z14-0 is a high-redshift Lyman-Break galaxy in the constellation Fornax that was discovered in 2024 using NIRcam as part of the JWST Advanced Deep Extragalactic Survey (JADES) program. [1][2] It has a redshift of 14.32, making it the most distant galaxy and astronomical object ever discovered.
Hubble's law, also known as the Hubble–Lemaître law, [1] is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away. For this purpose, the recessional velocity of a galaxy is typically determined by measuring ...
The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the further away an object is, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an ...