enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetosphere particle motion - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere_particle_motion

    Magnetosphere particle motion. A sketch of Earth's magnetic field representing the source of Earth's magnetic field as a magnet The North Pole of Earth is near the top of the diagram, the South Pole near the bottom. Notice that the South Pole of that magnet is deep in Earth's interior below Earth's North Magnetic Pole.

  3. Magnetohydrodynamics - Wikipedia

    en.wikipedia.org/wiki/Magnetohydrodynamics

    Electron Magnetohydrodynamics (EMHD) describes small scales plasmas when electron motion is much faster than the ion one. The main effects are changes in conservation laws, additional resistivity, importance of electron inertia. Many effects of Electron MHD are similar to effects of the Two fluid MHD and the Hall MHD.

  4. Plasma sheet - Wikipedia

    en.wikipedia.org/wiki/Plasma_sheet

    Artistic representation of Earth's magnetosphere. The plasma sheet is highlighted in yellow. In the magnetosphere, the plasma sheet is a sheet-like region of denser (0.3-0.5 ions/cm 3 versus 0.01-0.02 in the lobes) [citation needed] hot plasma and lower magnetic field located on the magnetotail and near the equatorial plane, between the magnetosphere's north and south lobes.

  5. Birkeland current - Wikipedia

    en.wikipedia.org/wiki/Birkeland_current

    A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field (IMF) and by bulk motions ...

  6. Magnetosphere - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere

    The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...

  7. Magnetospheric electric convection field - Wikipedia

    en.wikipedia.org/wiki/Magnetospheric_electric...

    Magnetospheric electric convection field. Electric field created by impact of solar wind onto the magnetosphere. The impact of the solar wind onto the magnetosphere generates an electric field within the inner magnetosphere (r < 10 a; with a the Earth's radius) - the convection field. [1] Its general direction is from dawn to dusk.

  8. Interplanetary magnetic field - Wikipedia

    en.wikipedia.org/wiki/Interplanetary_magnetic_field

    The interplanetary magnetic field at the Earth's orbit varies with waves and other disturbances in the solar wind, known as " space weather." The field is a vector, with components in the radial and azimuthal directions as well as a component perpendicular to the ecliptic. The field varies in strength near the Earth from 1 to 37 nT, averaging ...

  9. Heliospheric current sheet - Wikipedia

    en.wikipedia.org/wiki/Heliospheric_current_sheet

    The heliospheric current sheet rotates along with the Sun with a period of about 25 days, during which time the peaks and troughs of the skirt pass through the Earth's magnetosphere, interacting with it. Near the surface of the Sun, the magnetic field produced by the radial electric current in the sheet is of the order of 5 × 10 −6 T. [2]