Search results
Results from the WOW.Com Content Network
An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.
Geometrically, (x 1, 0) is the x-intercept of the tangent of the graph of f at (x 0, f(x 0)) ... One may also use Newton's method to solve systems of k equations, ...
For example, using single-precision IEEE arithmetic, if x = −2 −149, then x/2 underflows to −0, and dividing 1 by this result produces 1/(x/2) = −∞. The exact result −2 150 is too large to represent as a single-precision number, so an infinity of the same sign is used instead to indicate overflow.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
Gauss's formula alternately adds new points at the left and right ends, thereby keeping the set of points centered near the same place (near the evaluated point). When so doing, it uses terms from Newton's formula, with data points and x values renamed in keeping with one's choice of what data point is designated as the x 0 data point.
where h is a univariate polynomial in x 0 of degree D and g 0, ..., g n are univariate polynomials in x 0 of degree less than D. Given a zero-dimensional polynomial system over the rational numbers, the RUR has the following properties. All but a finite number linear combinations of the variables are separating variables.
The derivative of ln(x) is 1/x; this implies that ln(x) is the unique antiderivative of 1/x that has the value 0 for x = 1. It is this very simple formula that motivated to qualify as "natural" the natural logarithm; this is also one of the main reasons of the importance of the constant e .
If b = 0, the line is a vertical line (that is a line parallel to the y-axis) of equation =, which is not the graph of a function of x. Similarly, if a ≠ 0, the line is the graph of a function of y, and, if a = 0, one has a horizontal line of equation =.