Search results
Results from the WOW.Com Content Network
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 2 , − 8 5 , −8 5 , and 8 −5 .
A finite regular continued fraction, where is a non-negative integer, is an integer, and is a positive integer, for . A continued fraction is a mathematical expression that can be writen as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple ...
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
Snellen chart. Purpose. Snellen chart is used to estimate visual acuity (last three rows are 20/15, 20/13 and 20/10) A Snellen chart is an eye chart that can be used to measure visual acuity. Snellen charts are named after the Dutch ophthalmologist Herman Snellen who developed the chart in 1862 as a measurement tool for the acuity formula ...
For instance, Fibonacci represents the fraction 8 / 11 by splitting the numerator into a sum of two numbers, each of which divides one plus the denominator: 8 / 11 = 6 / 11 + 2 / 11 . Fibonacci applies the algebraic identity above to each these two parts, producing the expansion 8 / 11 = 1 / 2 ...
Because of the identity property of multiplication, multiplying any quantity (physical or not) by the dimensionless 1 does not change that quantity. [5] Once this and the conversion factor for seconds per hour have been multiplied by the original fraction to cancel out the units mile and hour, 10 miles per hour converts to 4.4704 metres per second.
Octal (base 8) is a numeral system with eight as the base. In the decimal system, each place is a power of ten. For example: In the octal system, each place is a power of eight. For example: By performing the calculation above in the familiar decimal system, we see why 112 in octal is equal to in decimal.