Search results
Results from the WOW.Com Content Network
The Boltzmann constant sets up a relationship between wavelength and temperature (dividing hc/k by a wavelength gives a temperature) with one micrometer being related to 14 387.777 K, and also a relationship between voltage and temperature (kT in units of eV corresponds to a voltage) with one volt being related to 11 604.518 K.
According to the correspondence principle, in certain limits the quantum equations of states must approach Hamilton's equations of motion.The latter state the following relation between the generalized coordinate q (e.g. position) and the generalized momentum p: {˙ = = {,}; ˙ = = {,}.
= , where k B is the Boltzmann constant, and Ω denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability. d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}} , for reversible processes only
where = is the reduced Planck constant.. The quintessentially quantum mechanical uncertainty principle comes in many forms other than position–momentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
Rewriting the relation above in these variables gives = (). where we now view f as a function of k. The use of ω(k) to describe the dispersion relation has become standard because both the phase velocity ω/k and the group velocity dω/dk have convenient representations via this function.
Predicting reaction direction: If Q < K, the reaction will proceed in the forward direction to establish equilibrium. If Q > K, the reaction will proceed in the reverse direction to reach equilibrium. Extent of reaction: The difference between Q and K provides information about how far the reaction is from equilibrium. A larger difference ...
where k is the wavevector of the vibration related to its wavelength by =. The connection between frequency and wavevector, ω = ω(k), is known as a dispersion relation. The plus sign results in the so-called optical mode, and the minus sign to the acoustic mode. In the optical mode two adjacent different atoms move against each other, while ...