Search results
Results from the WOW.Com Content Network
A multilinear map of one variable is a linear map, and of two variables is a bilinear map. More generally, for any nonnegative integer , a multilinear map of k variables is called a k-linear map. If the codomain of a multilinear map is the field of scalars, it is called a multilinear form.
Type II codes are binary self-dual codes which are doubly even. Type III codes are ternary self-dual codes. Every codeword in a Type III code has Hamming weight divisible by 3. Type IV codes are self-dual codes over F 4. These are again even. Codes of types I, II, III, or IV exist only if the length n is a multiple of 2, 8, 4, or 2 respectively.
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide Multilinear may refer to: ...
Codes in general are often denoted by the letter C, and a code of length n and of rank k (i.e., having n code words in its basis and k rows in its generating matrix) is generally referred to as an (n, k) code. Linear block codes are frequently denoted as [n, k, d] codes, where d refers to the code's minimum Hamming distance between any two code ...
Note that linear functionals (multilinear 1-forms over ) are trivially alternating, so that () = =, while, by convention, 0-forms are defined to be scalars: () = =. The determinant on n × n {\displaystyle n\times n} matrices, viewed as an n {\displaystyle n} argument function of the column vectors, is an important example of an alternating ...
A description of linear interpolation can be found in the ancient Chinese mathematical text called The Nine Chapters on the Mathematical Art (九章算術), [1] dated from 200 BC to AD 100 and the Almagest (2nd century AD) by Ptolemy. The basic operation of linear interpolation between two values is commonly used in computer graphics.
Multilinear algebra is the study of functions with multiple vector-valued arguments, with the functions being linear maps with respect to each argument. It involves concepts such as matrices, tensors, multivectors, systems of linear equations, higher-dimensional spaces, determinants, inner and outer products, and dual spaces.
The resulting polynomial is not a linear function of the coordinates (its degree can be higher than 1), but it is a linear function of the fitted data values. The determinant , permanent and other immanants of a matrix are homogeneous multilinear polynomials in the elements of the matrix (and also multilinear forms in the rows or columns).