Search results
Results from the WOW.Com Content Network
Orbital Parameters of a Cosmic Object: . α - RA, right ascension, if the Greek letter does not appear, á letter will appear. δ - Dec, declination, if the Greek letter does not appear, ä letter will appear.
The second is a link to the article that details that symbol, using its Unicode standard name or common alias. (Holding the mouse pointer on the hyperlink will pop up a summary of the symbol's function.); The third gives symbols listed elsewhere in the table that are similar to it in meaning or appearance, or that may be confused with it;
For example, the daily rotation of the Earth is clockwise when viewed from above the South Pole, and counterclockwise when viewed from above the North Pole (considering "above a point" to be defined as "farther away from the center of earth and on the same ray"). The shadow of a horizontal sundial in the Northern Hemisphere rotates clockwise
Similarly, any polar coordinate is identical to the coordinate with the negative radial component and the opposite direction (adding 180° to the polar angle). Therefore, the same point ( r , φ ) can be expressed with an infinite number of different polar coordinates ( r , φ + n × 360°) and (− r , φ + 180° + n × 360°) = (− r , φ ...
An object with an axial tilt up to 90 degrees is rotating in the same direction as its primary. An object with an axial tilt of exactly 90 degrees, has a perpendicular rotation that is neither prograde nor retrograde. An object with an axial tilt between 90 degrees and 180 degrees is rotating in the opposite direction to its orbital direction.
Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude.
For example, an angle of 30 degrees is already a reference angle, and an angle of 150 degrees also has a reference angle of 30 degrees (180° − 150°). Angles of 210° and 510° correspond to a reference angle of 30 degrees as well (210° mod 180° = 30°, 510° mod 180° = 150° whose supplementary angle is 30°).
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system— shown here in the mathematics convention —the sphere is adapted as a unit sphere , where the radius is set to unity and then can generally be ...