Search results
Results from the WOW.Com Content Network
For dynamic viscosity, the SI unit is Pascal-second. In engineering, the unit is usually Poise or centiPoise, with 1 Poise = 0.1 Pascal-second, and 1 centiPoise = 0.01 Poise. For kinematic viscosity, the SI unit is m^2/s. In engineering, the unit is usually Stoke or centiStoke, with 1 Stoke = 0.0001 m^2/s, and 1 centiStoke = 0.01 Stoke.
The viscosity of a shear thickening – i.e. dilatant – fluid appears to increase when the shear rate increases. Corn starch suspended in water ("oobleck", see below) is a common example: when stirred slowly it looks milky, when stirred vigorously it feels like a very viscous liquid.
The centipoise is convenient because the viscosity of water at 20 °C is about 1 cP, and one centipoise is equal to the SI millipascal second (mPa·s). The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1 ), named after Sir ...
Pressure on the oar often results in a highly viscous (more solid) thixotropic mud on the high pressure side of the blade, and low viscosity (very fluid) thixotropic mud on the low pressure side of the oar blade. Flow from the high pressure side to the low pressure side of the oar blade is non-Newtonian.
At low shear rates, the shear is too low to be impeded by entanglements and the viscosity value of the system is η 0, or the zero shear rate viscosity. The value of η ∞ represents the lowest viscosity attainable and may be orders of magnitude lower than η 0 , depending on the degree of shear thinning.
Any equation that makes explicit one of these transport coefficient in the conservation variables is called an equation of state. [9] Apart from its dependence of pressure and temperature, the second viscosity coefficient also depends on the process, that is to say, the second viscosity coefficient is not just a material property.
The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.
A centipoise is one hundredth of a poise, or one millipascal-second (mPa⋅s) in SI units (1 cP = 10 −3 Pa⋅s = 1 mPa⋅s). [4] The CGS symbol for the centipoise is cP. The abbreviations cps, cp, and cPs are sometimes seen. Liquid water has a viscosity of 0.00890 P at 25 °C at a pressure of 1 atmosphere (0.00890 P = 0.890 cP = 0.890 mPa⋅s).