Search results
Results from the WOW.Com Content Network
Bacterial nanowires (also known as microbial nanowires) are electrically conductive appendages produced by a number of bacteria most notably from the Geobacter and Shewanella genera. [ 1 ] [ 2 ] Conductive nanowires have also been confirmed in the oxygenic cyanobacterium Synechocystis PCC6803 and a thermophilic , methanogenic coculture ...
Microbial electrochemical technologies (METs) use microorganisms as electrochemical catalyst, merging the microbial metabolism with electrochemical processes for the production of bioelectricity, biofuels, H 2 and other valuable chemicals. [1] Microbial fuel cells (MFC) and microbial electrolysis cells (MEC) are prominent
To incorporate nanowire technology into industrial applications, researchers in 2008 developed a method of welding nanowires together: a sacrificial metal nanowire is placed adjacent to the ends of the pieces to be joined (using the manipulators of a scanning electron microscope); then an electric current is applied, which fuses the wire ends ...
Molecular electronics [6] is a technology under development brings hope for future atomic-scale electronic systems. A promising application of molecular electronics was proposed by the IBM researcher Ari Aviram and the theoretical chemist Mark Ratner in their 1974 and 1988 papers Molecules for Memory, Logic and Amplification (see unimolecular ...
In the future, cable bacteria may play a role in increasing the efficiency of microbial fuel cells deployed in sedimentary environments. Cable bacteria have also been found associated with a bioelectrochemical system that enhances the degradation of marine sediment contaminated by hydrocarbons [ 25 ] and thus may play a role in future oil spill ...
Shewanella, which makes protein nanowires [3] Geobacter, which makes protein nanowires out of pilin [4] Methanobacterium palustre [5] Methanococcus maripaludis [6] Mycobacterium smegmatis [7] [8] Modified Escherichia coli (with Geobacter nanowire genes) [9] [10] A broad collection of 30 bacteria varieties from marine sediments [11] [12]
[citation needed] These microbial processes have opened up new opportunities for us to explore novel applications, for example, the biosynthesis of metal nanomaterials. In contrast to chemical and physical methods, microbial processes for synthesizing nanomaterials can be achieved in aqueous phase under gentle and environmentally benign conditions.
OmcS nanowires (Geobacter nanowires) are conductive filaments found in some species of bacteria, including Geobacter sulfurreducens, where they catalyze the transfer of electrons. They are multi heme c-Type cytochromes localized outside of the cell of some exoelectrogenic bacterial species, serving as mediator of extracellular electron transfer ...