enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]

  3. Order of integration (calculus) - Wikipedia

    en.wikipedia.org/wiki/Order_of_integration...

    The method also is applicable to other multiple integrals. [1] [2] Sometimes, even though a full evaluation is difficult, or perhaps requires a numerical integration, a double integral can be reduced to a single integration, as illustrated next. Reduction to a single integration makes a numerical evaluation much easier and more efficient.

  4. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    This can be proved by computing the derivative of the right-hand side of the formula, taking into account that the condition on g is here for insuring the continuity of the integral. This gives the following formulas (where a ≠ 0), which are valid over any interval where f is continuous (over larger intervals, the constant C must be replaced ...

  5. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    This visualization also explains why integration by parts may help find the integral of an inverse function f −1 (x) when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.

  6. Cauchy formula for repeated integration - Wikipedia

    en.wikipedia.org/wiki/Cauchy_formula_for...

    The two formulas agree when . Both the Cauchy formula and the Riemann–Liouville integral are generalized to arbitrary dimensions by the Riesz potential . In fractional calculus , these formulae can be used to construct a differintegral , allowing one to differentiate or integrate a fractional number of times.

  7. Integration by reduction formulae - Wikipedia

    en.wikipedia.org/wiki/Integration_by_reduction...

    The main idea is to express an integral involving an integer parameter (e.g. power) of a function, represented by I n, in terms of an integral that involves a lower value of the parameter (lower power) of that function, for example I n-1 or I n-2. This makes the reduction formula a type of recurrence relation. In other words, the reduction ...

  8. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    double integral The multiple integral is a definite integral of a function of more than one real variable, for example, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in R 2 are called double integrals, and integrals of a function of three variables over a region of R 3 are called triple integrals. [33]

  9. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    Multiple integrals extend the dimensionality of this concept: assuming an n-dimensional analogue of a rectangular Cartesian coordinate system, the above definite integral has the geometric interpretation as the n-dimensional hypervolume bounded by f(x) and the x 1, x 2, …, x n axes, which may be positive, negative, or zero, depending on the ...