Search results
Results from the WOW.Com Content Network
Several variants are considered in Game Theory Evolving by Herbert Gintis. [2] In some variants of the problem, the players are allowed to communicate before deciding to go to the bar. However, they are not required to tell the truth. Named after a bar in Santa Fe, New Mexico, the problem was created in 1994 by W. Brian Arthur.
In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.
In game theory, the homicidal chauffeur problem is a mathematical pursuit problem which pits a hypothetical runner, who can only move slowly, but is highly maneuverable, against the driver of a motor vehicle, which is much faster but far less maneuverable, who is attempting to run him down. Both runner and driver are assumed to never tire.
Carl von Clausewitz's advice never to launch a war that one has not already won characterizes war as a no-win situation. A similar example is the Pyrrhic victory in which a military victory is so costly that the winning side actually ends up worse off than before it started.
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.
A solved game is a game whose outcome (win, lose or draw) can be correctly predicted from any position, assuming that both players play perfectly.This concept is usually applied to abstract strategy games, and especially to games with full information and no element of chance; solving such a game may use combinatorial game theory or computer assistance.
In mathematics and especially game theory, the airport problem is a type of fair division problem in which it is decided how to distribute the cost of an airport runway among different players who need runways of different lengths. The problem was introduced by S. C. Littlechild and G. Owen in 1973. [1] Their proposed solution is:
A classic example of a dynamic game with types is a war game where the player is unsure whether their opponent is a risk-taking "hawk" type or a pacifistic "dove" type. Perfect Bayesian Equilibria are a refinement of Bayesian Nash equilibrium (BNE), which is a solution concept with Bayesian probability for non-turn-based games.