enow.com Web Search

  1. Ad

    related to: four color map theorem examples calculus 1 worksheet

Search results

  1. Results from the WOW.Com Content Network
  2. Four color theorem - Wikipedia

    en.wikipedia.org/wiki/Four_color_theorem

    In graph-theoretic terms, the theorem states that for loopless planar graph, its chromatic number is ().. The intuitive statement of the four color theorem – "given any separation of a plane into contiguous regions, the regions can be colored using at most four colors so that no two adjacent regions have the same color" – needs to be interpreted appropriately to be correct.

  3. Tait's conjecture - Wikipedia

    en.wikipedia.org/wiki/Tait's_conjecture

    The conjecture was significant, because if true, it would have implied the four color theorem: as Tait described, the four-color problem is equivalent to the problem of finding 3-edge-colorings of bridgeless cubic planar graphs. In a Hamiltonian cubic planar graph, such an edge coloring is easy to find: use two colors alternately on the cycle ...

  4. Heawood conjecture - Wikipedia

    en.wikipedia.org/wiki/Heawood_conjecture

    An entirely different approach was needed for the much older problem of finding the number of colors needed for the plane or sphere, solved in 1976 as the four color theorem by Haken and Appel. On the sphere the lower bound is easy, whereas for higher genera the upper bound is easy and was proved in Heawood's original short paper that contained ...

  5. Hadwiger conjecture (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Hadwiger_conjecture_(graph...

    The case = is trivial: a graph requires more than one color if and only if it has an edge, and that edge is itself a minor. The case = is also easy: the graphs requiring three colors are the non-bipartite graphs, and every non-bipartite graph has an odd cycle, which can be contracted to a 3-cycle, that is, a minor.

  6. Discharging method (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Discharging_method...

    The discharging method is a technique used to prove lemmas in structural graph theory. [1] Discharging is most well known for its central role in the proof of the four color theorem. The discharging method is used to prove that every graph in a certain class contains some subgraph from a specified list.

  7. Chromatic polynomial - Wikipedia

    en.wikipedia.org/wiki/Chromatic_polynomial

    The 3-path: k(k – 1) 2. The 3-clique: k(k – 1)(k – 2). The chromatic polynomial is a graph polynomial studied in algebraic graph theory, a branch of mathematics. It counts the number of graph colorings as a function of the number of colors and was originally defined by George David Birkhoff to study the four color problem.

  8. Kempe chain - Wikipedia

    en.wikipedia.org/wiki/Kempe_chain

    Typically, the set S has four elements (the four colours of the four colour theorem), and c is a proper colouring, that is, each pair of adjacent vertices in V are assigned distinct colours. With these additional conditions, a and b are two out of the four colours available, and every element of the ( a , b )-Kempe chain has neighbours in the ...

  9. Conjecture - Wikipedia

    en.wikipedia.org/wiki/Conjecture

    The four color theorem was ultimately proven in 1976 by Kenneth Appel and Wolfgang Haken. It was the first major theorem to be proved using a computer. Appel and Haken's approach started by showing that there is a particular set of 1,936 maps, each of which cannot be part of a smallest-sized counterexample to the four color theorem (i.e., if ...

  1. Ad

    related to: four color map theorem examples calculus 1 worksheet