Search results
Results from the WOW.Com Content Network
The United States-based NASA, when conducting missions to the planet Mars, has typically used a time of day system calibrated to the mean solar day on that planet (known as a "sol"), training those involved on those missions to acclimate to that length of day, which is 88,775 SI seconds, or 2,375 seconds (about 39 minutes) longer than the mean ...
Arc length – Distance along a curve; Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric ...
A cushion filled with stuffing. In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch.
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
The main result of the paper is a randomized algorithm for finding an approximation to the volume of a convex body in -dimensional Euclidean space by assuming the existence of a membership oracle. The algorithm takes time bounded by a polynomial in n {\displaystyle n} , the dimension of K {\displaystyle K} and 1 / ε {\displaystyle 1 ...
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
The mathematics of the Old Babylonian Empire, from roughly the same time period as the Moscow Papyrus, also included calculations of the volumes of cuboids (and of non-polyhedral cylinders), and calculations of the height of such a shape needed to attain a given volume. [63]
The volume of the n-ball () can be computed by integrating the volume element in spherical coordinates. The spherical coordinate system has a radial coordinate r and angular coordinates φ 1 , …, φ n − 1 , where the domain of each φ except φ n − 1 is [0, π ) , and the domain of φ n − 1 is [0, 2 π ) .