Search results
Results from the WOW.Com Content Network
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
Since IDDFS, at any point, is engaged in a depth-first search, it need only store a stack of nodes which represents the branch of the tree it is expanding. Since it finds a solution of optimal length, the maximum depth of this stack is d {\displaystyle d} , and hence the maximum amount of space is O ( d ) {\displaystyle O(d)} .
A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.
An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):
Maze generation animation using Wilson's algorithm (gray represents an ongoing random walk). Once built the maze is solved using depth first search. All the above algorithms have biases of various sorts: depth-first search is biased toward long corridors, while Kruskal's/Prim's algorithms are biased toward many short dead ends.
The algorithm pops the stack up to and including the current node, and presents all of these nodes as a strongly connected component. In Tarjan's paper, when w is on the stack, v.lowlink is updated with the assignment v.lowlink := min(v.lowlink, w.index). [1]: 157 A common variation is to instead use v.lowlink := min(v.lowlink, w.lowlink).
If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]
Example applications of the stack search algorithm can be found in the literature: Frederick Jelinek. Fast sequential decoding algorithm using a stack. IBM Journal of Research and Development, pp. 675-685, 1969. Ye-Yi Wang and Alex Waibel. Decoding algorithm in statistical machine translation. Proceedings of the 8th conference on European ...