Search results
Results from the WOW.Com Content Network
Double-stranded RNA (dsRNA) is RNA with two complementary strands, similar to the DNA found in all cells, but with the replacement of thymine by uracil and the adding of one oxygen atom. dsRNA forms the genetic material of some viruses (double-stranded RNA viruses). Double-stranded RNA, such as viral RNA or siRNA, can trigger RNA interference ...
The allosteric model suggests that termination occurs due to the structural change of the RNA polymerase unit after binding to or losing some of its associated proteins, making it detach from the DNA strand after the signal. [9] This would occur after the RNA pol II unit has transcribed the poly-A signal sequence, which acts as a terminator signal.
Positive-strand RNA virus genomes usually contain relatively few genes, usually between three and ten, including an RNA-dependent RNA polymerase. [4] Coronaviruses have the largest known RNA genomes, between 27 and 32 kilobases in length, and likely possess replication proofreading mechanisms in the form of an exoribonuclease within nonstructural protein nsp14.
Both DNA and RNA are nucleic acids, which use base pairs of nucleotides as a complementary language. During transcription, a DNA sequence is read by an RNA polymerase, which produces a complementary, antiparallel RNA strand called a primary transcript. In virology, the term transcription is used when referring to mRNA synthesis from a viral RNA ...
It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5 ′-to-3 ′ direction. Different tables with alternate codons are used depending on the source of the genetic code, such as from a cell nucleus, mitochondrion, plastid, or hydrogenosome. [5]
For example, in a typical gene a start codon (5′-ATG-3′) is a DNA sequence within the sense strand. Transcription begins at an upstream site (relative to the sense strand), and as it proceeds through the region it copies the 3′-TAC-5′ from the template strand to produce 5′-AUG-3′ within a messenger RNA (mRNA).
Double-stranded RNA forms an A-type helical structure, unlike the common B-type conformation taken by double-stranded DNA molecules. The secondary structure of RNA consists of a single polynucleotide. Base pairing in RNA occurs when RNA folds between complementarity regions. Both single- and double-stranded regions are often found in RNA molecules.
It uses one strand (darker orange) as a template to create the single-stranded messenger RNA (green). In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template.