Search results
Results from the WOW.Com Content Network
A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically to deal with a LOCA. Nuclear reactors generate heat internally; to remove this heat and convert it into ...
A loss-of-pressure-control accident (LOPA) is a mode of failure for a nuclear reactor that involves the pressure of the confined coolant falling below specification. [1] Most commercial types of nuclear reactor use a pressure vessel to maintain pressure in the reactor plant.
A nuclear reactor coolant is a coolant in a nuclear reactor used to remove heat from the nuclear reactor core and transfer it to electrical generators and the environment. Frequently, a chain of two coolant loops are used because the primary coolant loop takes on short-term radioactivity from the reactor.
In a large nuclear reactor, a loss of coolant accident can damage the core: for example, at Three Mile Island Nuclear Generating Station a recent shutdown PWR reactor was left for a length of time without cooling water. As a result, the nuclear fuel was damaged, and the core partially melted. The removal of the decay heat is a significant ...
A core damage accident is caused by the loss of sufficient cooling for the nuclear fuel within the reactor core. The reason may be one of several factors, including a loss-of-pressure-control accident, a loss-of-coolant accident (LOCA), an uncontrolled power excursion. Failures in control systems may cause a series of events resulting in loss ...
RELAP5-3D is an outgrowth of the one-dimensional RELAP5/MOD3 code developed at Idaho National Laboratory (INL) for the U.S. Nuclear Regulatory Commission (NRC). The U.S. Department of Energy (DOE) began sponsoring additional RELAP5 development in the early 1980s to meet its own reactor safety assessment needs.
Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency (usually overheating resulting from a loss of coolant or loss of coolant flow).
Some reactors circulate pressurized water; some use liquid metal, such as sodium, NaK, lead, or mercury; others use gases (see advanced gas-cooled reactor). If the coolant is a liquid, it may boil if the temperature inside the reactor rises. This boiling leads to voids inside the reactor. Voids may also form if coolant is lost from the reactor ...