Search results
Results from the WOW.Com Content Network
Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between and (+) for every positive integer. [1] The conjecture is one of Landau's problems (1912) on prime numbers, and is one of many open problems on the spacing of prime numbers.
The generator is not sensitive to the choice of c, as long as it is relatively prime to the modulus (e.g. if m is a power of 2, then c must be odd), so the value c=1 is commonly chosen. The sequence produced by other choices of c can be written as a simple function of the sequence when c=1.
and at least another prime between x 2 and x(x + 1). It can also be phrased equivalently as stating that the prime-counting function must take unequal values at the endpoints of each range. [3] That is: π (x 2 − x) < π (x 2) < π (x 2 + x) for x > 1. with π (x) being the number of prime numbers less than or equal to x.
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...
Here, the order of the generator, | g |, is the number of non-zero elements of the field. In the case of GF(2 8) this is 2 8 − 1 = 255. That is to say, for the Rijndael example: (x + 1) 255 = 1. So this can be performed with two look up tables and an integer subtract. Using this idea for exponentiation also derives benefit:
Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper ...
The prime number race generalizes to other moduli and is the subject of much research; Pál Turán asked whether it is always the case that π c,a (x) and π c,b (x) change places when a and b are coprime to c. [34]