Search results
Results from the WOW.Com Content Network
In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...
A variable is considered dependent if it depends on an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of ...
In statistics, response surface methodology (RSM) explores the relationships between several explanatory variables and one or more response variables. RSM is an empirical model which employs the use of mathematical and statistical techniques to relate input variables, otherwise known as factors, to the response.
In statistics, linear regression is a model that estimates the linear relationship between a scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable).
In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression.The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.
If the response data used to estimate the model contain values that change sign, or if the lowest response value is far from zero (for example, when data are left-truncated), a location parameter, L, may be added to the response so that the expressions for the quantile function and for the median become, respectively:
Nuisance variable effect on response variable Nuisance variable (sex) effect on response variable (weight loss) In the examples listed above, a nuisance variable is a variable that is not the primary focus of the study but can affect the outcomes of the experiment. [3]
Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median (or other quantiles) of the response variable.