Ad
related to: example of continuous function in algebra 2 problems with solutions
Search results
Results from the WOW.Com Content Network
If one wants to extend the natural functional calculus for polynomials on the spectrum of an element of a Banach algebra to a functional calculus for continuous functions (()) on the spectrum, it seems obvious to approximate a continuous function by polynomials according to the Stone-Weierstrass theorem, to insert the element into these polynomials and to show that this sequence of elements ...
So, if the open mapping theorem holds for ; i.e., is an open mapping, then is continuous and then is continuous (as the composition of continuous maps). For example, the above argument applies if is a linear operator between Banach spaces with closed graph, or if is a map with closed graph between compact Hausdorff spaces.
Intermediate value theorem: Let be a continuous function defined on [,] and let be a number with () < < ().Then there exists some between and such that () =.. In mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval [a, b], then it takes on any given value between () and () at some point within the interval.
the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
Universal differential equation — differential–algebraic equation whose solutions can approximate any continuous function; Fekete problem — find N points on a sphere that minimize some kind of energy; Carleman's condition — condition guaranteeing that a measure is uniquely determined by its moments
In such a space every closed subset of X is the common zero set of a family of continuous complex-valued functions on X, allowing one to recover the topology of X from C 0 (X). Note that C 0 (X) is unital if and only if X is compact, in which case C 0 (X) is equal to C(X), the algebra of all continuous complex-valued functions on X.
The first successful step in the generalization of this concept to functions of several variables was due to Leonida Tonelli, [1] who introduced a class of continuous BV functions in 1926 (Cesari 1986, pp. 47–48), to extend his direct method for finding solutions to problems in the calculus of variations in more than one variable.
Ad
related to: example of continuous function in algebra 2 problems with solutions