Ads
related to: example of continuous function in algebra 2 problems with solutions
Search results
Results from the WOW.Com Content Network
If one wants to extend the natural functional calculus for polynomials on the spectrum of an element of a Banach algebra to a functional calculus for continuous functions (()) on the spectrum, it seems obvious to approximate a continuous function by polynomials according to the Stone-Weierstrass theorem, to insert the element into these polynomials and to show that this sequence of elements ...
Intermediate value theorem: Let be a continuous function defined on [,] and let be a number with () < < ().Then there exists some between and such that () =.. In mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval [a, b], then it takes on any given value between () and () at some point within the interval.
So, if the open mapping theorem holds for ; i.e., is an open mapping, then is continuous and then is continuous (as the composition of continuous maps). For example, the above argument applies if is a linear operator between Banach spaces with closed graph, or if is a map with closed graph between compact Hausdorff spaces.
The space of complex-valued continuous functions on a compact Hausdorff space i.e. (,) is the canonical example of a unital commutative C*-algebra. The space X may be viewed as the space of pure states on , with the weak-* topology. Following the above cue, a non-commutative extension of the Stone–Weierstrass theorem, which remains unsolved ...
the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
The limit function is also Lipschitz continuous with the same value K for the Lipschitz constant. A slight refinement is A set F of functions f on [a, b] that is uniformly bounded and satisfies a Hölder condition of order α, 0 < α ≤ 1, with a fixed constant M,
The constant term in the Taylor series of the scaled bifurcation equation is called the algebraic bifurcation equation, and the implicit function theorem applied the bifurcation equations states that for each isolated solution of the algebraic bifurcation equation there is a branch of solutions of the original problem which passes through the ...
Ads
related to: example of continuous function in algebra 2 problems with solutions