enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spectral theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory

    The name spectral theory was introduced by David Hilbert in his original formulation of Hilbert space theory, which was cast in terms of quadratic forms in infinitely many variables. The original spectral theorem was therefore conceived as a version of the theorem on principal axes of an ellipsoid , in an infinite-dimensional setting.

  3. Holonomic brain theory - Wikipedia

    en.wikipedia.org/wiki/Holonomic_brain_theory

    Holonomic brain theory is a branch of neuroscience investigating the idea that consciousness is formed by quantum effects in or between brain cells. Holonomic refers to representations in a Hilbert phase space defined by both spectral and space-time coordinates. [ 1 ]

  4. Resolvent formalism - Wikipedia

    en.wikipedia.org/wiki/Resolvent_formalism

    When studying a closed unbounded operator A: H → H on a Hilbert space H, if there exists () such that (;) is a compact operator, we say that A has compact resolvent. The spectrum () of such A is a discrete subset of .

  5. Rigged Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Rigged_Hilbert_space

    A rigged Hilbert space is a pair (H, Φ) with H a Hilbert space, Φ a dense subspace, such that Φ is given a topological vector space structure for which the inclusion map:, is continuous. [ 4 ] [ 5 ] Identifying H with its dual space H * , the adjoint to i is the map i ∗ : H = H ∗ → Φ ∗ . {\displaystyle i^{*}:H=H^{*}\to \Phi ^{*}.}

  6. EEG analysis - Wikipedia

    en.wikipedia.org/wiki/EEG_analysis

    Among all the spectral methods, power spectral analysis is the most commonly used, since the power spectrum reflects the 'frequency content' of the signal or the distribution of signal power over frequency. [4] This technique can be used to investigate the energy changes of different frequency components in EEG signals during EEG analysis.

  7. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    In the theory of ordinary differential equations, spectral methods on a suitable Hilbert space are used to study the behavior of eigenvalues and eigenfunctions of differential equations. For example, the Sturm–Liouville problem arises in the study of the harmonics of waves in a violin string or a drum, and is a central problem in ordinary ...

  8. Spectral theory of normal C*-algebras - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory_of_normal...

    Throughout, is a fixed Hilbert space. A projection-valued measure on a measurable space (,), where is a σ-algebra of subsets of , is a mapping: such that for all , is a self-adjoint projection on (that is, () is a bounded linear operator (): that satisfies () = and () = ()) such that = (where is the identity operator of ) and for every ,, the function defined by (), is a complex measure on ...

  9. Models of consciousness - Wikipedia

    en.wikipedia.org/wiki/Models_of_consciousness

    Sometimes the models are labeled theories of consciousness. Anil Seth defines such models as those that relate brain phenomena such as fast irregular electrical activity and widespread brain activation to properties of consciousness such as qualia. Seth allows for different types of models including mathematical, logical, verbal and conceptual ...