Search results
Results from the WOW.Com Content Network
By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). [1]
] Solutions are homogeneous and do not scatter light at common analytical wavelengths (ultraviolet, visible, or infrared), except at entry and exit. Thus light within a solution is reasonably approximated as due to absorption alone. In Bouguer's context, atmospheric dust or other inhomogeneities could also scatter light away from the detector ...
An overview of electromagnetic radiation absorption. This example discusses the general principle using visible light.A white beam source – emitting light of multiple wavelengths – is focused on a sample (the complementary color pairs are indicated by the yellow dotted lines).
Solutions to the equation of radiative transfer form an enormous body of work. The differences however, are essentially due to the various forms for the emission and absorption coefficients. If scattering is ignored, then a general steady state solution in terms of the emission and absorption coefficients may be written:
Maxwell's equations are the basis of theoretical and computational methods describing light scattering, but since exact solutions to Maxwell's equations are only known for selected particle geometries (such as spherical), light scattering by particles is a branch of computational electromagnetics dealing with electromagnetic radiation ...
Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by absorption of light or photons. It is defined as the interaction of one or more photons with one target molecule that dissociates into two fragments.
For example, white paint is quoted as having an absorptivity of 0.16, while having an emissivity of 0.93. [13] This is because the absorptivity is averaged with weighting for the solar spectrum, while the emissivity is weighted for the emission of the paint itself at normal ambient temperatures.
Of all these solutions, only + satisfies the Sommerfeld radiation condition and corresponds to a field radiating from . The other solutions are unphysical [ citation needed ] . For example, u − {\displaystyle u_{-}} can be interpreted as energy coming from infinity and sinking at x 0 . {\displaystyle x_{0}.} [ 3 ]