Ad
related to: is vector calculus calc 3wyzant.com has been visited by 10K+ users in the past month
- Helping Others Like You
We've Logged Over 6 Million Lessons
Read What Others Have to Say.
- Personalized Sessions
Name Your Subject, Find Your Tutor.
Customized 1-On-1 Instruction.
- Online Tutoring
Affordable, 1-on-1 Online Tutors.
You Pick The Time, Price and Tutor.
- In a Rush? Instant Book
Tell us When You Need Help and
Connect With the Right Instructor
- Helping Others Like You
Search results
Results from the WOW.Com Content Network
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B:
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
In single-variable calculus, the fundamental theorem of calculus establishes a link between the derivative and the integral. The link between the derivative and the integral in multivariable calculus is embodied by the integral theorems of vector calculus: [1]: 543ff Gradient theorem; Stokes' theorem; Divergence theorem; Green's theorem.
The vector calculus operations of grad, curl, and div are most easily generalized in the context of differential forms, which involves a number of steps. In short, they correspond to the derivatives of 0-forms, 1-forms, and 2-forms, respectively.
It would be a few decades later that Newton and Leibniz independently developed infinitesimal calculus, which grew, with the stimulus of applied work that continued through the 18th century, into analysis topics such as the calculus of variations, ordinary and partial differential equations, Fourier analysis, and generating functions.
In mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (dα = 0), and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the image of d, and a closed form is in the kernel of d.
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
Ad
related to: is vector calculus calc 3wyzant.com has been visited by 10K+ users in the past month