enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:4x4 magic square hierarchy.svg - Wikipedia

    en.wikipedia.org/wiki/File:4x4_magic_square...

    For each square, cells with the same colour (excluding grey) sum to the magic constant. Note *: The second requirement of most-perfect magic squares imply that any 2 cells that are 2 cells diagonally apart (including wraparound) sum to half the magic constant, hence any 2 such pairs also sum to the magic constant. Width: 100%: Height: 100%

  3. Associative magic square - Wikipedia

    en.wikipedia.org/wiki/Associative_magic_square

    The number zero for n = 6 is an example of a more general phenomenon: associative magic squares do not exist for values of n that are singly even (equal to 2 modulo 4). [3] Every associative magic square of even order forms a singular matrix, but associative magic squares of odd order can be singular or nonsingular. [4]

  4. Magic square - Wikipedia

    en.wikipedia.org/wiki/Magic_square

    The above magic squares of orders 3 to 9 are taken from Yang Hui's treatise, in which the Luo Shu principle is clearly evident. [7] [8] The order 5 square is a bordered magic square, with central 3×3 square formed according to Luo Shu principle. The order 9 square is a composite magic square, in which the nine 3×3 sub squares are also magic. [7]

  5. Pandiagonal magic square - Wikipedia

    en.wikipedia.org/wiki/Pandiagonal_magic_square

    Since each 2 × 2 subsquare sums to the magic constant, 4 × 4 pandiagonal magic squares are most-perfect magic squares. In addition, the two numbers at the opposite corners of any 3 × 3 square add up to half the magic constant. Consequently, all 4 × 4 pandiagonal magic squares that are associative must have duplicate cells.

  6. Most-perfect magic square - Wikipedia

    en.wikipedia.org/wiki/Most-perfect_magic_square

    A most-perfect magic square of order n is a magic square containing the numbers 1 to n 2 with two additional properties: Each 2 × 2 subsquare sums to 2 s , where s = n 2 + 1. All pairs of integers distant n /2 along a (major) diagonal sum to s .

  7. Siamese method - Wikipedia

    en.wikipedia.org/wiki/Siamese_method

    For example the following sequence can be used to form an order 3 magic square according to the Siamese method (9 boxes): 5, 10, 15, 20, 25, 30, 35, 40, 45 (the magic sum gives 75, for all rows, columns and diagonals). The magic sum in these cases will be the sum of the arithmetic progression used divided by the order of the magic square.

  8. Conway's LUX method for magic squares - Wikipedia

    en.wikipedia.org/wiki/Conway's_LUX_method_for...

    Start by creating a (2n+1)-by-(2n+1) square array consisting of n+1 rows of Ls, 1 row of Us, and; n-1 rows of Xs, and then exchange the U in the middle with the L above it. Each letter represents a 2x2 block of numbers in the finished square.

  9. Strachey method for magic squares - Wikipedia

    en.wikipedia.org/wiki/Strachey_method_for_magic...

    As a running example, we consider a 10×10 magic square, where we have divided the square into four quarters. The quarter A contains a magic square of numbers from 1 to 25, B a magic square of numbers from 26 to 50, C a magic square of numbers from 51 to 75, and D a magic square of numbers from 76 to 100.