Search results
Results from the WOW.Com Content Network
Tetracycline antibiotics are protein synthesis inhibitors. [22] They inhibit the initiation of translation in variety of ways by binding to the 30S ribosomal subunit, which is made up of 16S rRNA and 21 proteins. They inhibit the binding of aminoacyl-tRNA to the mRNA translation complex.
The 30S subunit is the target of antibiotics such as tetracycline and gentamicin. [11] These antibiotics specifically target the prokaryotic ribosomes, hence their usefulness in treating bacterial infections in eukaryotes. Tetracycline interacts with H27 in the small subunit as well as binding to the A-site in the large subunit. [11]
Tetracycline inhibits protein synthesis by blocking the attachment of charged tRNA at the P site peptide chain. Tetracycline blocks the A-site so that a hydrogen bond is not formed between the amino acids. Tetracycline binds to the 30S and 50S subunit of microbial ribosomes. [3] Thus, it prevents the formation of a peptide chain. [25]
Most target bacterial functions or growth processes. [8] Those that target the bacterial cell wall (penicillins and cephalosporins) or the cell membrane , or interfere with essential bacterial enzymes (rifamycins, lipiarmycins, quinolones, and sulfonamides) have bactericidal activities, killing the bacteria.
Inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome Fosfomycin: Monurol, Monuril: Acute cystitis in women: This antibiotic is not recommended for children and 75 and up of age: Inactivates enolpyruvyl transferase, thereby blocking cell wall synthesis Fusidic acid: Fucidin: Metronidazole: Flagyl
As human and bacteria both have ribosomes, streptomycin has significant side effects in humans. At low concentrations, however, streptomycin inhibits only bacterial growth. [18] Streptomycin is an antibiotic that inhibits both Gram-positive and Gram-negative bacteria, [19] and is therefore a useful broad-spectrum antibiotic.
β-Lactam antibiotics are indicated for the prevention and treatment of bacterial infections caused by susceptible organisms. At first, β-lactam antibiotics were mainly active only against gram-positive bacteria, yet the recent development of broad-spectrum β-lactam antibiotics active against various gram-negative organisms has increased their usefulness.
A well-known member of this antibiotic class, chloramphenicol, acts by inhibiting peptide bond formation, with recent 3D-structural studies showing two different binding sites depending on the species of ribosome. Numerous mutations in domains of the 23S rRNA with Peptidyl transferase activity have resulted in antibiotic resistance.