Search results
Results from the WOW.Com Content Network
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]
10 −5: 10 −4: 180–480 μM: normal range for uric acid in blood [10] 570 μM: inhaled carbon monoxide induces unconsciousness in 2–3 breaths and death in < 3 min (12 800 ppm) [15] 10 −3: mM 0.32–32 mM: normal range of hydronium ions in stomach acid (pH 1.5–3.5) [16] 5.5 mM: upper bound for healthy blood glucose when fasting [17] 7.8 mM
In Unicode, the symbol is represented by U+03BC μ GREEK SMALL LETTER MU or the legacy symbol U+00B5 µ MICRO SIGN. The prefix "mc" is commonly used in healthcare or when the character "μ" is not available; for example, "mcg" commonly denotes a microgram. [3] The letter "u" is sometimes used instead of "μ" when non-Latin characters are not ...
Greenhouse and growth chamber lighting for plants is sometimes expressed in micromoles per square metre per second, where 1 mol photons ≈ 6.02 × 10 23 photons. [7] The obsolete unit einstein is variously defined as the energy in one mole of photons and also as simply one mole of photons.
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]
In chemistry, it is customary to read the unit "mol/L" as molar, and denote it by the symbol "M" (both following the numeric value). Thus, for example, each liter of a "0.5 molar" or "0.5 M" solution of urea (CH 4 N 2 O) in water contains 0.5 moles of that molecule. By extension, the amount concentration is also commonly called the molarity of ...
The SI unit is the katal, 1 katal = 1 mol s −1 (mole per second), but this is an excessively large unit. A more practical and commonly used value is enzyme unit (U) = 1 μmol min −1 (micromole per minute). 1 U corresponds to 16.67 nanokatals. [1]
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...