enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  3. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    Mamba [a] is a deep learning architecture focused on sequence modeling. It was developed by researchers from Carnegie Mellon University and Princeton University to address some limitations of transformer models , especially in processing long sequences.

  4. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    A five-step method to infer birth and death years, gender, and occupation from community-submitted data to all language versions of the Wikipedia project. 1,223,009 Text Regression, Classification 2022 Paper [258] Dataset [259] Amoradnejad et al. Synthetic Fundus Dataset [260] Photorealistic retinal images and vessel segmentations. Public domain.

  5. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The plain transformer architecture had difficulty converging. In the original paper [1] the authors recommended using learning rate warmup. That is, the learning rate should linearly scale up from 0 to maximal value for the first part of the training (usually recommended to be 2% of the total number of training steps), before decaying again.

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. Differentiable neural computer - Wikipedia

    en.wikipedia.org/wiki/Differentiable_neural_computer

    On graph traversal and sequence-processing tasks with supervised learning, DNCs performed better than alternatives such as long short-term memory or a neural turing machine. [5] With a reinforcement learning approach to a block puzzle problem inspired by SHRDLU , DNC was trained via curriculum learning, and learned to make a plan .

  9. Gato (DeepMind) - Wikipedia

    en.wikipedia.org/wiki/Gato_(DeepMind)

    Gato is a deep neural network for a range of complex tasks that exhibits multimodality. It can perform tasks such as engaging in a dialogue, playing video games, controlling a robot arm to stack blocks, and more. It was created by researchers at London-based AI firm DeepMind. It is a transformer, like GPT-3. [1]