Search results
Results from the WOW.Com Content Network
The following pseudocode demonstrates an algorithm that merges input lists (either linked lists or arrays) A and B into a new list C. [ 1 ] [ 2 ] : 104 The function head yields the first element of a list; "dropping" an element means removing it from its list, typically by incrementing a pointer or index.
Example C-like code using indices for top-down merge sort algorithm that recursively splits the list (called runs in this example) into sublists until sublist size is 1, then merges those sublists to produce a sorted list. The copy back step is avoided with alternating the direction of the merge with each level of recursion (except for an ...
Divide-and-conquer approach to sort the list (38, 27, 43, 3, 9, 82, 10) in increasing order. Upper half: splitting into sublists; mid: a one-element list is trivially sorted; lower half: composing sorted sublists. The divide-and-conquer paradigm is often used to find an optimal solution of a problem.
For instance, the array might be subdivided into chunks of a size that will fit in RAM, the contents of each chunk sorted using an efficient algorithm (such as quicksort), and the results merged using a k-way merge similar to that used in merge sort. This is faster than performing either merge sort or quicksort over the entire list.
The algorithm divides the input list into two parts: a sorted sublist of items which is built up from left to right at the front (left) of the list and a sublist of the remaining unsorted items that occupy the rest of the list. Initially, the sorted sublist is empty and the unsorted sublist is the entire input list.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
The most unbalanced partition occurs when one of the sublists returned by the partitioning routine is of size n − 1. [26] This may occur if the pivot happens to be the smallest or largest element in the list, or in some implementations (e.g., the Lomuto partition scheme as described above) when all the elements are equal.
The list handle should then be a pointer to the last data node, before the sentinel, if the list is not empty; or to the sentinel itself, if the list is empty. The same trick can be used to simplify the handling of a doubly linked linear list, by turning it into a circular doubly linked list with a single sentinel node.