Search results
Results from the WOW.Com Content Network
Gottfried Wilhelm von Leibniz (1646–1716), German philosopher, mathematician, and namesake of this widely used mathematical notation in calculus.. In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols dx and dy to represent infinitely small (or infinitesimal) increments of x and y, respectively ...
Solutions to a slope field are functions drawn as solid curves. A slope field shows the slope of a differential equation at certain vertical and horizontal intervals on the x-y plane, and can be used to determine the approximate tangent slope at a point on a curve, where the curve is some solution to the differential equation.
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
The original notation employed by Gottfried Leibniz is used throughout mathematics. It is particularly common when the equation y = f(x) is regarded as a functional relationship between dependent and independent variables y and x.
defines only one solution (), the so-called singular solution, whose graph is the envelope of the graphs of the general solutions. The singular solution is usually represented using parametric notation, as ( x ( p ) , y ( p ) ) {\displaystyle (x(p),y(p))} , where p = d y / d x {\displaystyle p=dy/dx} .
Using calculus, it is possible to relate the infinitely small changes of various variables to each other mathematically using derivatives. If y is a function of x, then the differential dy of y is related to dx by the formula =, where dy/dx denotes the derivative of y with respect to x.
In calculus, the differential represents a change in the linearization of a function. The total differential is its generalization for functions of multiple variables. In traditional approaches to calculus, differentials (e.g. dx, dy, dt, etc.) are interpreted as infinitesimals. There are several methods of defining infinitesimals rigorously ...
The determinant is ρ 2 sin φ. Since dV = dx dy dz is the volume for a rectangular differential volume element (because the volume of a rectangular prism is the product of its sides), we can interpret dV = ρ 2 sin φ dρ dφ dθ as the volume of the spherical differential volume element.